High resolution mapping of Koch's triangle using sixty electrodes in humans with atrioventricular junctional (AV nodal) reentrant tachycardia.
نویسندگان
چکیده
BACKGROUND Recent evidence suggests that atrioventricular junctional reentrant tachycardia (AVJRT) uses a reentrant circuit that involves the atrioventricular (AV) node, the atrionodal connections, and perinodal atrial tissue. Electrogram morphology has been used to target the delivery of radiofrequency energy to the site of the "slow pathway," a component of this reentrant circuit. The aim of this study was to localize precisely the sites of atrionodal connections involved in AVJRT and to examine atrial electrogram morphologies and their spatial distribution over Koch's triangle. METHODS AND RESULTS Electrical activation of Koch's triangle and the proximal coronary sinus was examined in 13 patients using a 60-point plaque electrode and computerized mapping system. Recordings were made during sinus rhythm (n = 12), left atrial pacing (n = 8), ventricular pacing (n = 12), and AVJRT (n = 12). During sinus rhythm electrical activation approached Koch's triangle and the AV node from the direction of the anterior limbus, activating the anterior part of the triangle before the posterior part. A zone of slow conduction during sinus rhythm was found within Koch's triangle in 64% of patients. The pattern of atrial activation in Koch's triangle during anterograde fast pathway conduction was similar to that seen during anterograde slow pathway conduction. Retrograde fast pathway conduction during ventricular pacing and during anterior (typical) AVJRT caused earliest atrial activation at the apex of Koch's triangle near the AV node-His bundle junction. In individual patients the site of earliest atrial activation was similar for both anterior AVJRT and retrograde fast pathway conduction during ventricular pacing. Retrograde slow pathway conduction during ventricular pacing and during posterior (uncommon or atypical) AVJRT caused earliest atrial activation posterior to the AV node near the orifice of the coronary sinus. This posterior or "slow pathway" exit site was 15 +/- 4 mm from the His bundle. In individual patients the site of earliest atrial activation was similar for both posterior AVJRT and retrograde slow pathway conduction during ventricular pacing. In one patient anterograde and retrograde conduction occurred via separate slow pathways during AVJRT: Complex atrial electrograms with two or more components were observed near the coronary sinus orifice and in the posterior part of Koch's triangle in all cases. These were categorized as either low or high frequency potentials according to the rapidity of the second component of the electrogram. Low frequency potentials were present at the site of earliest atrial excitation during retrograde slow pathway conduction in 5 of 5 cases (100%) and high frequency potentials in 4 of 5 cases (80%). However, both slow and high frequency potentials could be found at sites up to 16 mm from the site of earliest atrial excitation. CONCLUSIONS At least two distinct groups of atrionodal connections exist. The site of earliest atrial activation during anterior AVJRT is similar to that of fast pathway conduction during ventricular pacing. This site is close to the His bundle-AV node junction. The site of earliest atrial activation during posterior AVJRT is similar to that of slow pathway conduction during ventricular pacing. This site is near the coronary sinus orifice, approximately 15 mm from the His bundle. The anterograde slow pathway appears to be different from the retrograde slow pathway in some patients. Double atrial electrograms are an imprecise guide to the site of earliest atrial excitation during retrograde slow pathway conduction.
منابع مشابه
High Resolution Mapping of Koch ' s Triangle Using Sixt Electrodes in Humans With Atrioventricular Junctional ( AV Nodal ) Reentrant Tachycardia
Background. Recent evidence suggests that atrioventricular junctional reentrant tachycardia (AVJRT) uses a reentrant circuit that involves the atrioventricular (AV) node, the atrionodal connections, and perinodal atrial tissue. Electrogram morphology has been used to target the delivery of radiofrequency energy to the site of the "slow pathway," a component of this reentrant circuit. The aim of...
متن کاملReentrant pathway during ventricular echoes is confined to the atrioventricular node : high-resolution mapping and dissection of the triangle of koch in isolated, perfused canine hearts.
Background-During ventricular echoes, reentrant excitation is supposed to involve 2 functionally distinct pathways in the atrioventricular (AV) nodal area. The exact pathway of reentrant excitation is unknown. The objectives of this study were to analyze electrical activity in the AV nodal area after ventricular stimulation and during ventricular echoes and to assess the role of perinodal atria...
متن کاملMechanisms underlying the reentrant circuit of atrioventricular nodal reentrant tachycardia in isolated canine atrioventricular nodal preparation using optical mapping.
The reentrant pathways underlying different types of atrioventricular (AV) nodal reentrant tachycardia have not yet been elucidated. This study was performed to optically map Koch's triangle and surrounding atrial tissue in an isolated canine AV nodal preparation. Multiple preferential AV nodal input pathways were observed in all preparations (n=22) with continuous (73%, n=16) and discontinuous...
متن کاملStructural characteristics of Koch's triangle in patients with atrioventricular node reentrant tachycardia.
The aim of this study is to investigate whether patients with atrioventricular node reentrant tachycardia (AVNRT) present different structural characteristics of Koch's triangle from patients with atrioventricular (AV) reentrant tachycardia and other control patients. Fifty-eight patients with arrhythmia or chest pain underwent selective coronary sinus angiography so that the diameter of the co...
متن کاملOptical mapping of the atrioventricular junction.
In the normal heart, the atrioventricular node (AVN) is part of the sole pathway between the atria and ventricles, and is responsible for the appropriate atrial-ventricular delay. Under normal physiological conditions, the AVN controls appropriate frequency-dependent delay of contractions. The AVN also plays an important role in pathology: it protects ventricles during atrial tachyarrhythmia, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 88 5 Pt 1 شماره
صفحات -
تاریخ انتشار 1993